The μ-opioid receptors ( MOR) are a class of with a high affinity for and beta-endorphin, but a low affinity for . They are also referred to as μ( mu)-opioid peptide (MOP) receptors. The prototypical μ-opioid receptor agonist is morphine, the primary psychoactive alkaloid in opium and for which the receptor was named, with mu being the first letter of Morpheus, the compound's namesake in the original Greek. It is an inhibitory G-protein coupled receptor that activates the Gi alpha subunit, inhibiting adenylate cyclase activity, lowering cAMP levels.
More is known about the μ1 opioid receptor than the other variants. |
TRIMU 5 is a selective agonist of the μ2 receptor. |
The μ3 variant was first described in 2003. It is responsive to opiate but not . |
The μ-opioid receptors exist mostly in the periaqueductal gray region, and in the superficial dorsal horn of the spinal cord (specifically the substantia gelatinosa of Rolando). Other areas where they have been located include the external plexiform layer of the olfactory bulb, the nucleus accumbens, in several layers of the cerebral cortex, and in some of the nuclei of the amygdala, as well as the nucleus of the solitary tract.
Some MORs are also found in the intestinal tract. Activation of these receptors inhibits peristaltic action which causes constipation, a major side effect of μ agonists.
Activation of the μ-opioid receptor by an agonist such as morphine causes analgesia, sedation, slightly reduced blood pressure, itching, nausea, euphoria, decreased respiration, miosis (constricted pupils), and decreased bowel motility often leading to constipation. Some of these effects, such as analgesia, sedation, euphoria, itching and decreased respiration, tend to lessen with continued use as tolerance develops. Miosis and reduced bowel motility tend to persist; little tolerance develops to these effects.
The canonical MOR1 isoform is responsible for morphine-induced analgesia, whereas the alternatively spliced MOR1D isoform (through heterodimerization with the gastrin-releasing peptide receptor) is required for morphine-induced itching.*
Long-term or high-dose use of opioids may also lead to additional mechanisms of tolerance becoming involved. This includes downregulation of MOR gene expression, so the number of receptors presented on the cell surface is actually reduced, as opposed to the more short-term desensitisation induced by β-arrestins or RGS proteins. Another long-term adaptation to opioid use can be upregulation of glutamate and other pathways in the brain which can exert an opioid-opposing effect, so reduce the effects of opioid drugs by altering downstream pathways, regardless of MOR activation.
Substantial tolerance to respiratory depression develops quickly, and tolerant individuals can withstand larger doses. However, tolerance to respiratory depression is quickly lost during withdrawal and may be completely reversed within a week. Many overdoses occur in people who return to their previous dose after having lost their tolerance following cessation of opioids. This puts addicts who receive medical treatment for opioid addiction at great risk of overdose when they are released, as they may be particularly vulnerable to relapse.
Less commonly, massive overdoses have been known to cause circulatory collapse from vasodilation and bradycardia.
Opioid overdoses can be rapidly reversed through the use of opioid antagonists, naloxone being the most widely used example. Opioid antagonists work by binding competitively to μ-opioid receptors and displacing opioid agonists. Additional doses of naloxone may be necessary and supportive care should be given to prevent hypoxic brain injury by monitoring vital signs.
Tramadol and tapentadol carry additional risks associated with their dual effects as SNRIs and can cause serotonin syndrome and seizures. Despite these risks, there is evidence to suggest that these drugs have a lower risk of respiratory depression compared to morphine.
Note that some of the above drugs may actually be very weak partial agonists rather than silent antagonists.
|
|